
Inverse Problems, Design and Optimization Symposium
Rio de Janeiro, Brazil, 2004

INVERSE PROCEDURE FOR PARAMETERS IDENTIFICATION OF
CONTINUUM DAMAGE MODELS

Cecilia Iacono and Lambertus J. Sluys
Faculty of Civil Engineering and Geosciences,

Delft University of Technology
Delft, The Netherlands

c.iacono@citg.tudelf.nl and l.j.sluys@.citg.tudelft.nl

Jan G. M. van Mier
Institute for Building Materials

ETH Hönggerberg
Zürich, Switzerland

vanmier@ibwk.baug.ethz.ch

ABSTRACT
The parameter identification problem of the

gradient-enhanced continuum damage model is
presented as optimization problem.

The experimental results of tensile size effect
tests on concrete specimens are used for the
evaluation of the error between the experimental
and computational data that has to be minimized.

Important issues are analyzed: the parameters
identifiability in relation with the experimental
information involved in the inverse problem, the
influence of the initial guess of the model
parameters on their final estimates, the limits of
the model in reproducing the experimental size
effect curve of tests that are strongly statistical.

INTRODUCTION
Fracture phenomena in quasi-brittle materials

may be described by discrete or continuum
models. In the first type of models the failure of
the mechanical system is reproduced by definition
of a fracture criterion along the crack and linear
elastic relations in the remaining part. In the
continuum models, instead, the loss of mechanical
integrity is accounted for in the constitutive
relations. A zone of material degradation and
localized deformation, according to the standard
continuum mechanics theory, represents the
fracture.

However, the reliability and the predictive
capacity of both classes of models rely on the
correct estimation of the model parameters. These
parameters may not all be directly measurable in
the laboratory and an inverse problem has to be
solved.

The paper presents the parameter
identification problem of the elasticity based
gradient-enhanced continuum damage model that

belongs to the second class of models described
above.

The model is briefly presented in the next
Section, followed by the formulation of the
inverse problem and some applications (see also
[10]).

GRADIENT-ENHANCED DAMAGE MODEL
(FORWARD PROBLEM)

Local formulation
The adopted numerical model is based on the

isotropic continuum damage formulation of
Lemaitre and Chaboche [1].

A scalar invariant measure of strain, the
equivalent strain �eq, is defined as function of the
strain tensor components. Different definitions of
�eq can be formulated. Here the following
modified von Mises definition [2] is adopted:
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where I1’ and J2’ are the first invariant of the
strain tensor and the second invariant of the
deviatoric strain tensor, respectively, and � is a
model parameter representing the  ratio between
the compressive and tensile strength of the
material: �=fcc/fct.

As long as the equivalent strain �eq is smaller
than a strain threshold �i, no damage occurs in the
material. The scalar variable representing the
damage � is equal to zero and the material
behavior is linear elastic, being:

el(1 )� ��σ D ε (2)
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where Del is the matrix of the virgin elastic
stiffness moduli.

When �eq=�i the damage process starts,
evolving according to the following relations:

i( )i1 [1 e ]�� ����
� � � �� ��

�
(3)

eq maxmax( , )� � � � (4)

where �max is the maximum value of equivalent
strain occurred in the material, and � and � are
two additional model parameters.

The result is a softening curve, given by the
Equation 2 and 3, where the residual stress of the
damaged material (�=1) is governed by � and the
(negative) slope of the softening branch is
governed by �, as schematically represented in
Figure 1.

Figure 1. Exponential softening damage evolution law and
uniaxial stress-strain curve.

Whether damage growth is possible is
determined on the basis of a loading function:

eq eq eq( ) ( )� � � � � �f (5)

with the following Kuhn-Tucker relations:

0       0       0� � � � �� �f f (6)

However the numerical results obtained using
the above formulation are affected by mesh
dependence. One of the possible ways of
regularizing the model is through the introduction
of the concept of non-locality.

Nonlocal formulation
A nonlocal equivalent strain is introduced as a

spatially averaged quantity in a neighborhood of a

material point, whose size is determined by a
model parameter known as the length scale [3],
[4]:
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where y points to the position of the infinitesimal
volume d�. The homogeneous and isotropic
Gauss distribution is usually adopted for the
weight function �(y ; x).

In a gradient damage formulation the integral
Equation 7 can be approximated by the following
partial differential equation [5]:

eq eq eq� � � � � �
2c (8)

where 	
2=
i�

2/�xi
2 and c is the gradient

parameter, which is related to the internal length
scale parameter.

The diffusion Equation 8 has to be solved in
addition to the classical equilibrium problem
described previously, replacing �eq with the
nonlocal counterpart ��eq in the Equations 4 and
5.

All the model parameters may be collected in
a vector x:

T[E ]� � � � � �x i c (9)

where

E = Young’s modulus
� = Poisson’s ratio
�i = strain threshold for damage initiation
� = softening curve parameter
      (related to the residual stress)
� = softening curve parameter
      (related to the slope of the softening branch)
c = gradient parameter
      (related to the length scale parameter)
� = ratio of compressive and tensile strength fcc/fct

The inverse problem consists therefore in
identifying the vector x.

PARAMETER IDENTIFICATION PROBLEM
(INVERSE PROBLEM)

During laboratory tests, ny observable
quantities (e.g. forces, displacements etc.) can be
measured at different "instants" t and collected in
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a vector yt
exp for t=1,2,3....nt. On the other hand,

starting from an initial guess of x, the same
quantities may be computed solving the forward
problem presented in the previous Section and
collected in a corresponding vector yt

comp(x). On
the basis of the discrepancy between the two
vectors yt

exp and yt
comp(x) a new updated

estimation of x, depending on the adopted inverse
technique, is computed. This iterative procedure,
common to many inverse techniques, is
implemented in a statistical context in the case of
the Kalman filter method, which is used here for
the applications.

Kalman filter method (KF)
The basic notions and equations of the method

are presented, while for a complete treatment see
e.g. [6] and [7].

The solution of the forward problem depends
on the model parameter vector x according to the
following general relation:

t
comp t( ) ( )�y x h x   (10)

where ht(x) is the forward operator, that in the
case of the gradient-enhanced damage model is a
nonlinear operator.

The following assumptions are considered:
- the mathematical model, i.e. the forward
operator ht(x), is deterministic
- measurements uncertainties, represented by a
vector vt, are Gaussian white noises (i.e. zero
mean and Cexp covariance matrix):

t t
exp comp t t t( ) ( )� � � �y y x v h x v   (11)

- an initial “a priori” estimate of the model
parameter vector x is available, that is assumed to
be statistically defined by a Gaussian distribution
with mean x0 and covariance matrix C0.

Starting from those assumptions the parameter
identification problem becomes the following
optimization problem:

t T t 1 t
exp t exp exp tˆ min{( ( )) ( ) ( ( ))�
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      T 1
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In case of a nonlinear forward operator, the
solution of the minimization problem represented
by Equation 12 requires a step-by-step
linearization (1st-order Taylor expansion) of ht(x),
obtaining the following set of equations:

t
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�

�
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where the tangent operator Lt is the sensitivity
matrix and Kt the gain matrix.

Equations 13-16 define a recursive procedure
that, filtering along the sequence of experimental
data, gives at each step t a better estimate of the
model parameter vector x and the associated
covariance matrix C.

NUMERICAL APPLICATIONS

Experimental data
The parameter identification problem, related

to the gradient-enhanced damage model, is solved
using the experimental data of uniaxial tensile
size effect tests. The tests, performed in the
Stevinlab of the Delft University of Technology
[8], concern concrete dog-bone shaped specimens
of six sizes reported in Figure 2.

Figure 2. Specimen shape and dimensions for the adopted size
range of the tensile size effect tests.

 For computing time reasons only �, � and c,
among all the model parameters collected in the
vector x (see Equation 9), are involved in the
identification procedure. The remaining
parameters are considered as a priori known and
their values, measured in standard tests, are:
E=33000 [MPa], �=0.2, �i=0.0001, �=14.55.

The experimental data are force-deformation
curves for all the specimen sizes. The force is the
total load applied to the specimen and the
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deformation is the average value of all the LVDTs
placed in the middle of the specimen.

Preliminary study: neighborhood function
The initialization of the iterative KF procedure

represented by the Equations 13-16 (i.e. t=1)
requires an initial guess x0 and C0. In case of the
nonlinear forward operator ht(x) the choice of the
initial guess may have a crucial influence on the
final parameters estimate.

 For this purpose a preliminary insight into the
objective function of the optimization problem
may be useful. Here a simple method is proposed
consisting in the approximated building of the
following neighborhood function surface, in
correspondence of a certain zone of the parameter
space:

T 1
comp exp exp comp exp( ) ( ( ) ) ( ( ) )f �

� � �x y x y C y x y  (17)

The function represented by Equation 17
represents the squared weighted distance between
the two vectors yt

exp and yt
comp(x). The minimizer

x of f(x) corresponds to the minimum discrepancy
between the experimental and numerical solution.
Once a population of model parameter vectors xi
is chosen, with i=1,2…np, the neighborhood
function f(xi) may be evaluated for each
individual and an approximation of the surface
may be built. Here the selected parameters
population is represented by the sets generated by
all the combinations of the values given in the
Table 1.

Table 1. Values for the generation of the
parameters population

Parameter c [mm2] � �

Value n. 1 20.0 1500.0 0.93
Value n. 2 25.0 1400.0 0.94
Value n. 3 30.0 1300.0 0.95
Value n. 4 35.0 1200.0 -
Value n. 5 40.0 1100.0 -
Value n. 6 45.0 1000.0 -
Value n. 7 50.0 900.0 -
Value n. 8 - 800.0 -
Value n. 9 - 700.0 -

For each specimen size a total number of
7x9x3=189 forward problems is solved in order to

compute the vector yt
comp(xi) and then f(xi)

according Equation 17.
The quantities in the vector yt

comp(x) are
represented by 100 points along the global force-
deformation curve. In other words, 100 forces
corresponding to 100 fixed and equally spaced
deformations are considered in a batch form (the
superscript index t disappears in Equation 17, i.e.
t=1) for the experimental-numerical comparison:

1 100 T
comp comp comp( ) [ ( ) ... ( )]F F�y x x x   (18)

The plot of the approximated surface f(x) as
function of  c and �, starting from the 189 points
f(xi), is shown in Figure 3 for each specimen size
(type F omitted because of the large
computational effort). Only the case of �=0.93 is
presented, since analogous results are obtained for
the other values of �.

The objective function f(x) has basically a
saddle shape. All the parameter sets
corresponding to the saddle area give numerical
results yt

comp that are approximations of the same
quality of the experimental data yt

exp. Additional
experimental information is necessary in order to
select only one model parameter set. The gradient
parameter c and the softening parameter � turn
out to be correlated if only global data (force-
deformation curves) is considered in the solution
of the inverse problem.

KF solution
Four KF identification procedures are

considered, in the case of the specimen type B, in
order to investigate the influence of C0, Cexp, and
the number of KF steps nt on the final parameters
estimate. The related data are reported in Table 2.
In all four cases only c and � are involved in the
identification procedure (�=0.95 considered as a
priori known), starting from an initial guess
x0=[c0 �0]T=[40 1200]T.

Table 2. KF procedures data
KF proc. C0 [%] Cexp [%] nt
KFI (ref.) 40 50 (real) 20

KFII 10 50 20
KFIII 40 5 20
KFIV 40 50 30
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Figure 3. Neighborhood function f(x) for different specimen sizes (�=0.93 for all cases).

The total force applied to the specimen is
considered at each KF step, so that the vector
yt

comp(x) becomes a scalar quantity:

t t
comp compy ( ) F ( , )c� �x   (19)

The initial guess x0 and the final parameter
estimates of the four KF procedures are reported
in Figure 4. The local and global minima of the
neighborhood function (Equation 17) are also
shown in the same figure.

Figure 4. Estimated parameter sets for KFI, KFII, KFIII, KFIV.

Although the neighborhood function exploits
the experimental force-deformation curve in a
batch form (i.e. t=1) while the KF updates the
parameters estimate at each t on the basis of a
single point of that curve, interesting remarks can
be made by a comparison in Figure 4.
- The covariance matrix C0 associated with x0 is a
measure of the uncertainty on the initial guess,
and the final solution remains confined within an
area proportional to C0. Hence the final estimate
computed by KFII, characterized by the smallest
covariance C0, is close to the initial guess x0.  In
fact, if an additional penalty term concerning the
initial guess is introduced in the neighborhood
function (Equation 17):

T 1
comp exp exp comp exp( ) ( ( ) ) ( ( ) )f �

� � � �x y x y C y x y

          T 1 T
0 0 0( ) ( )�

� � �x x C x x  (20)

the function f(x)  takes a convex shape related to
C0, as shown in Figure 5. The comparison
between Figure 4 and Figure 5 points out the
important role of C0 and x0.
- An area of uncertainty proportional to Cexp may
be defined around the mean value yt

exp. Only the
numerical solutions within that area are good
approximations of the experimental solution.
Hence, in case of the KFIII, with the smallest Cexp,
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Figure 5. The effect of the initial guess x0 and the associated covariance C0 in the neighborhood function f(x).

the final estimation x is forced to correspond to a
numerical solution yt

comp(x) close to yt
exp,

approaching the local minima of the
neighborhood function. If a discrepancy between
the computational and the experimental curve
exists, the KF performs well in minimizing this
discrepancy only if a narrow strip around the
experimental curve is defined by Cexp and a large
strip around the computational curve is defined by
C0 (see Figure 6).

Figure 6. Meaning of Cexp and C0.

- The final estimation is improved by increasing
the number of KF steps, as in the case of KFIV.
- The parameter sets identified by the considered
KF procedures converge to the same local
minimum (except KFII), being the starting point in
that attraction basin.

Size effect curve
The plot of the peak forces versus the

characteristic sizes of the specimen represents the
size effect curve.

Considering only one model parameter set for
all the specimen sizes, a computational curve is
obtained that is too flat with respect of the
experimental curve, as shown in Figure 7.
Varying the set (see Figure 7) only result in a
vertical shift of the curve. A possible explanation
is that the considered experimental tests are
characterized by a strong statistical effect: the
statistical distribution of the model parameters is
related to the statistical variation of local material

properties in each specimen size. The adopted
deterministic damage model can not capture this
phenomenon [9].

Figure 7. Experimental and computational size effect curves.

Effect of local experimental data
The effect of adding local experimental

information in the definition of the neighborhood
function (Equation 17) is investigated in the
simple case of one-dimensional bar in tension,
with a weak zone in the middle part, where
deformation and damage localize.

The load-deformation curve, the damage
profile and the equivalent strain profile along the
bar represent the solution of the forward problem.

Pseudo-experimental data are created
artificially considering analytical curves that are
close to the computational curves corresponding
to the following reference parameter set: x = [c
�]=[30 1500]T (see Figure 8).

The remaining model parameters, considered
as a priori known, are E=20000 [MPa], �=0.0,
�=0.95, �i=0.0001/0.00009 (the smaller value for
the weak part of the bar), �=14.00. Geometrical
data are: bar length L= 100.0 [mm], length of the
weak part l= 10 [mm], cross-section A= 10
[mm2].

The neighborhood function f(x) may be
rewritten in the following form, with three
separate contributions:

x0=[35 1100]T

C0,20%

x0=[35 1100]T

C0,5%

range of variation for the
exp curve governed by Cexp

range of variation for the
comp curve governed by C0
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Figure 8. Pseudo-experimental data
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where in the vectors � and � points are collected
along the damage profile curve and equivalent
strain profile curve, respectively.

Analogous to the previous case, a population
of model parameter sets xi is chosen and the
approximation of the neighborhood function is
built from the evaluations of f(xi).  The plots and
contour plots of f(x) are reported in Figure 9
considering  the various contributions in Equation
21. The introduction of additional experimental
information concerning the process zone (damage
or strain field data) in the solution of the inverse
problem is necessary for the correct estimation of
the model parameter vector.

CONCLUSIONS
The Kalman filter technique is a powerful tool

that identifies not only the model parameters, but
also the related uncertainty. However, the non-
linearity of the problem makes the choice of the
initial guess x0 and the associated covariance
matrix C0 a crucial factor with significant
influence on the final parameters estimate. A
preliminary study of the objective function is
useful for the selection of the initial guess and in
order to have insight in the well posedness of the
inverse problem.

In case of the gradient-enhanced continuum
damage model, the parameter identification
problem based only on the global experimental
information of the force-displacement curve lacks
an unique solution: a correlation is found between
the gradient parameter c and the softening
parameter �. Additional experimental
information, related to the strain or damage
distribution in the failure process zone, is
necessary for a correct estimation of the model
parameters.

The examined numerical model, with only one
model parameter set, can not reproduce the
experimental size effect curve of the considered
dog-bone shaped specimens, due to the strong
statistical characteristic of the tests.
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